Package index
-
run_simulations()
- Run Simulations for Estimating ATE
-
simulate_ate_data_with_weights()
- Simulate Data for Average Treatment Effect (ATE) with Sample Weights
-
margot_count_dyads()
- count dyads in longitudinal data
-
margot_count_ids()
- count individual participants in longitudinal data
-
margot_plot_boxplot()
- Create panel data Boxplots using ggplot2
-
margot_plot_boxplot_covariate()
- create boxplots with covariates using ggplot2
-
margot_plot_discontinuity()
- Create a Discontinuity Plot for Multiple Events
-
margot_plot_histogram()
- Create a Histogram with Mean and Standard Deviation Highlights for Each Wave and Variable
-
margot_plot_response_timeline()
- Plot Panel Study Response Timeline
-
margot_plot_slope()
- Create a Slope Plot for Multiple Variables
-
margot_plot_slope_covariate()
- Create a Slope Plot using ggeffects
-
margot_plot_slope_covariate_batch()
- Create a Combined Slope Plot using ggeffects and patchwork
-
margot_plot_slope_covariate_combo()
- Create a Combined Slope Plot using ggeffects and patchwork
-
margot_summary_panel()
- Generate Summary Panel for Margot Study
-
match_mi_general()
- General Matching Function for Multiple Imputation Data
-
margot_make_tables()
- Create Summary Tables Using table1 with Custom Formatting
-
margot_plot_categorical()
- Create a Coloured Histogram with Quantile or Custom Breaks
-
margot_plot_individual_responses()
- Create Individual Longitudinal Response Plots
-
margot_plot_shift()
- Visualise Shifts in Data Distributions with Highlighted Ranges
-
margot_propensity_model_and_plots()
- Create Propensity Score Model and Associated Plots
-
margot_summary_tables()
- Generate summary tables and plots for longitudinal data
-
margot_transition_table()
- Format a Transition Table
-
create_ordered_variable()
- Create Ordered Variable Based on Quantile Breaks or Custom Breaks with Informative Labels
-
impute_and_combine()
- Perform multiple imputation on a list of data frames and combine the results
-
margot_adjust_weights()
- Adjust Weights for Censoring and Sample Design with Progress Reporting
-
margot_amelia_to_mice()
- convert an amelia object to a mice object
-
margot_censor()
- Transform year_measured Variable Based on Clustered Conditions Within Waves
-
margot_compute_gender_weights_by_wave()
- Compute Gender-Based Sample Weights Using Baseline Wave Proportions
-
margot_filter()
- Filter Data Based on Exposure Variables
-
margot_impute_carry_forward()
- Impute Missing Values Using Carry Forward in Longitudinal Data
-
margot_log_transform_vars()
- Log-transform Variables in a Data Frame
-
margot_process_binary_vars()
- Process Binary Variables in a Data Frame
-
margot_process_longitudinal_data()
- process longitudinal data for three waves
-
margot_process_longitudinal_data_wider()
- process longitudinal dyadic data for multiple waves
-
margot_wide()
- Transform longitudinal data to wide format with labels
-
margot_wide_impute_baseline()
- Transform to wide data with labels and impute baseline missing values
-
margot_wide_machine()
- Transform longitudinal data to wide format with baseline imputation and NA indicators
-
causal_contrast_engine()
- Compute Causal Contrasts
-
causal_contrast_marginal()
- Causal Contrast Marginal Effects Estimation
-
double_robust_marginal()
- Double Robust Marginal Estimation and Tabulation
-
margot_causal_forest()
- Run Multiple Generalized Random Forest (GRF) Causal Forest Models with Enhanced Qini Cross-Validation
-
margot_lmtp()
- Batch Process LMTP Models
-
margot_multi_arm_causal_forest()
- Run Multiple Generalized Random Forest (GRF) Multi-Arm Causal Forest Models with Enhanced Features
-
margot_bind_tables()
- Bind and Format Domain-Specific Tables
-
margot_compare_groups()
- Compare Treatment Effects Between Groups
-
margot_flip_forests()
- Flip CATE Estimates for Selected Outcomes in GRF Model Results
-
margot_interpret_marginal()
- This function interprets the output of causal effect analysis, providing a compact report. It only reports coefficients and E-values with **Evidence** or **Strong evidence** for causality, unless all estimates with E_Value > 1 (and E_Val_bound > 1) are requested. Each outcome's interpretation starts with a separate paragraph heading. Additionally, it includes a final paragraph indicating that all other effect estimates presented either weak or unreliable evidence for causality.
-
margot_interpret_policy_batch()
- Batch process policy tree interpretations
-
margot_interpret_policy_tree()
- Interpret Policy Tree Results
-
margot_interpret_qini()
- Interpret Qini Results for Both Binary and Multi-Arm Treatments
-
margot_interpret_rate()
- Interpret RATE estimates in markdown
-
margot_lmtp_evalue()
- Combine LMTP Summary and E-Value Calculation
-
margot_lmtp_tab()
- Summarise LMTP Output into a Data Frame
-
margot_model_evalue()
- Combine Model Summary and E-Value Calculation for Various Causal Models
-
margot_model_tab()
- Summarise LMTP or Causal Forest Output into a Data Frame
-
margot_omnibus_hetero_test()
- Omnibus Heterogeneity Test for GRF Models
-
margot_planned_subgroups_batch()
- Batch process heterogeneity analyses across multiple outcome domains
-
margot_policy()
- Batch Processing of Policy Trees and Related Visualizations
-
margot_rate()
- Format RATE Results into Readable Tables
-
margot_subset_model()
- Subset Model Results for Binary and Categorical Exposures
-
margot_subset_batch()
- Batch Process Subset Models for Causal Forests
-
margot_summary_cate_difference_gain()
- Compute Difference in Gains and Integrated Difference Between Reference and Comparison Curves
-
margot_plot()
- Create a Margot Plot with Interpretation
-
margot_plot_decision_tree()
- Plot a Decision Tree from Margot Causal Forest Results
-
margot_plot_multi_arm()
- Create a Multi-arm Margot Plot with User-specified Contrast
-
margot_plot_policy_combo()
- Create a Combined Decision Tree and Policy Relationship Graph
-
margot_plot_policy_tree()
- Plot Policy Tree Results
-
margot_plot_qini()
- Plot Qini Curves from margot_multi_arm_causal_forest Results
-
margot_plot_rate()
- Plot Rank Average Treatment Effect
-
margot_plot_rate_batch()
margot_plot_batch_rate()
- Batch Process and Plot RATE Curves for Multiple Models (New Function)
-
back_transform_logmean()
- Back-transform Log-transformed Mean
-
back_transform_log_z()
- Back Transform Z-Score to Original Log-Transformed Scale
-
back_transform_zscore()
- Back Transform Z-Score to Original Scale
-
construct_formula()
- Construct a Formula for Regression Models
-
here_read()
- Read Data Frame or Object from RDS File in a Specified Directory
-
here_save()
- Save Data Frame as RDS File in a Specified Directory
-
here_read_qs()
- Read Data Frame or Object from qs File in a Specified Directory
-
here_save_qs()
- Save Data Frame or Object to qs File in a Specified Directory with Enhanced Compression
-
lmtp_evalue_tab()
- Calculate E-values for LMTP Output
-
margot_back_transform_log_z()
- Create Z-score to Original Scale Mapping for Log-Transformed Data
-
margot_log_transform_vars()
- Log-transform Variables in a Data Frame
-
margot_plot_create_options()
- Create Plot Options for Margot Plot
-
margot_plot_exposure()
- Create a separate exposure plot
-
margot_process_binary_vars()
- Process Binary Variables in a Data Frame
-
margot_prop_missing()
- Proportion of missing data at baseline
-
margot_save_png()
- Save Margot Plot as PNG
-
margot_size()
- Calculate the size of an R object in megabytes
-
prepare_panel_data()
- Prepare Panel Data for Timeline Visualization
-
pretty_number()
- Format Numbers with Commas
-
remove_numeric_attributes()
- Remove Attributes from Numeric Columns in a Data Frame
-
regress_with_covariates()
- Generalized Linear Regression with Covariates
-
select_and_rename_cols()
- Select and Rename Columns Based on Criteria
-
transform_table_rownames()
- Transform Table Row Names with CLI Feedback
-
df_nz
- df_nz: Example Data Frame