Package index
-
margot_count_dyads() - count dyads in longitudinal data
-
margot_count_ids() - count individual participants in longitudinal data
-
margot_plot_boxplot() - Create panel data Boxplots using ggplot2
-
margot_plot_boxplot_covariate() - create boxplots with covariates using ggplot2
-
margot_plot_discontinuity() - Create a Discontinuity Plot for Multiple Events
-
margot_plot_histogram() - Create a Histogram with Mean and Standard Deviation Highlights for Each Wave and Variable
-
margot_plot_response_timeline() - Plot Panel Study Response Timeline
-
margot_plot_slope() - Create a Slope Plot for Multiple Variables
-
margot_plot_slope_covariate() - Create a Slope Plot using ggeffects
-
margot_plot_slope_covariate_batch() - Create a Combined Slope Plot using ggeffects and patchwork
-
margot_plot_slope_covariate_combo() - Create a Combined Slope Plot using ggeffects and patchwork
-
margot_summary_panel() - Generate Summary Panel for Margot Study
-
margot_grf_overlap() - Assess Covariate Overlap from Causal Forest Models
-
margot_lmtp_overlap() - Assess Overlap/Positivity from LMTP Models via Density Ratios
-
margot_report_lmtp_positivity() - One-stop LMTP positivity/overlap reporting for an analysis
-
margot_lmtp_ratio_grid() - LMTP density-ratio panel (per-wave grid)
-
margot_lmtp_overlap_plot_grid() - Arrange LMTP overlap ratio_plots into a grid (waves x shifts)
-
margot_assess_overlap() - Assess Covariate Overlap from Causal Forest Models
-
margot_make_tables() - Create Summary Tables Using table1 with Custom Formatting
-
margot_plot_categorical() - Create a coloured histogram with summary lines and optional median
-
margot_plot_individual_responses() - Create Individual Longitudinal Response Plots
-
margot_plot_shift() - Visualise Shifts in Data Distributions with Highlighted Ranges
-
margot_propensity_model_and_plots() - Create Propensity Score Model and Associated Plots
-
margot_transition_table() - Format a Transition Table with observed‑indicator filtering
-
create_ordered_variable() - Create Ordered Variable Based on Quantile Breaks or Custom Breaks with Informative Labels
-
impute_and_combine() - Perform multiple imputation on a list of data frames and combine the results
-
margot_adjust_weights() - Adjust Weights for Censoring and Sample Design with Progress Reporting
-
margot_censor() - Transform year_measured Variable Based on Clustered Conditions Within Waves
-
margot_censor_lead() - Apply Lead-Based Censoring to Longitudinal Data
-
margot_compute_gender_weights_by_wave() - Compute Gender-Based Sample Weights Using Baseline Wave Proportions
-
margot_filter() - Filter Data Based on Exposure Variables
-
margot_impute_carry_forward() - Impute Missing Values Using Carry Forward in Longitudinal Data
-
margot_log_transform_vars() - Log-transform Variables in a Data Frame
-
margot_process_binary_vars() - Process Binary Variables in a Data Frame
-
margot_process_longitudinal_data() - process longitudinal data for three waves
-
margot_process_longitudinal_data_wider() - Process longitudinal dyadic data in wide format with censoring by missing exposure and silent dummy-coding
-
margot_wide_machine() - Transform longitudinal data to wide format with baseline imputation and optional NA indicators
-
margot_causal_forest() - Run Multiple Generalized Random Forest (GRF) Causal Forest Models with Enhanced Qini Cross-Validation
-
margot_lmtp() - Batch Process LMTP Models
-
margot_lmtp_restore_checkpoints() - Restore LMTP Output from Saved Checkpoints
-
margot_naive_regressions() - Perform Naive Cross-Sectional Regressions
-
margot_policy_tree() - Recompute Policy Trees with Custom Parameters
-
margot_policy_tree_stability() - Stability Analysis for Policy Trees
-
margot_policy_tree_bootstrap() - Bootstrap Analysis for Policy Trees
-
margot_assess_variable_correlation() - Assess Variable Correlations for Policy Tree Analysis
-
margot_identify_variable_clusters() - Identify Variable Clusters for Policy Tree Analysis
-
margot_stability_diagnostics() - Diagnose Policy Tree Stability
-
margot_recalculate_policy_trees() - Recalculate Policy Trees with Custom Covariates
-
margot_recompute_ate() - Recompute Average Treatment Effects with Different Target Samples
-
margot_recompute_ate_batch() - Batch Recompute ATEs for Multiple Target Samples
-
margot_bind_tables() - Bind and format domain-specific tables or a single table
-
margot_bind_models() - Combine multiple batched model outputs (with covariates & metadata)
-
margot_compare_groups() - Compare subgroups from a causal forest model.
-
margot_correct_combined_table() - Correct a "combined table" for multiplicity **and** recompute *E*-values
-
margot_flip_forests() - Flip (Reverse) Causal Forest Treatment Effects
-
margot_inspect_qini() - Inspect qini diagnostics for one or several models
-
margot_interpret_lmtp_positivity()margot_interpret_lmtp_overlap() - Interpret LMTP positivity via effective sample sizes
-
margot_ipsi_summary() - Tidy per-shift LMTP positivity summary (IPSI-friendly)
-
margot_interpret_lmtp_learners() - Interpret Super Learner weights for LMTP nuisance fits
-
margot_interpret_stability() - Interpret Policy Tree Stability Results
-
margot_interpret_stability_batch() - Batch Interpret Policy Tree Stability Results
-
margot_report_consensus_policy_value() - Report Policy Value for Consensus Trees
-
margot_table_consensus_policy_value() - Manuscript-ready table for consensus policy value
-
margot_table_treated_only() - Condensed table: treated-only summary
-
margot_policy_summary_report() - Policy Tree Summary Report (text + markdown table)
-
margot_policy_summary_compare_depths() - Compare Depth-1 vs Depth-2 Policy Summaries and Pick Best per Outcome
-
margot_policy_methods_statement() - Policy Learning Methods Statement
-
margot_interpret_bootstrap() - Interpret Bootstrap Policy Tree Results
-
margot_interpret_lmtp_positivity_overview() - Overview bullets for multiple LMTP positivity analyses
-
margot_interpret_policy_batch() - Batch process policy tree interpretations
-
margot_interpret_policy_tree() - Interpret Policy Tree Results
-
margot_interpret_qini() - Interpret Qini Results
-
margot_interpret_rate() - Interpret RATE Estimates
-
margot_interpret_rate_cv() - Interpret CV RATE Results
-
margot_interpret_heterogeneity() - Interpret Heterogeneity Evidence from Multiple Sources
-
margot_interpret_rate_comparison() - Compare AUTOC and QINI RATE Tables
-
margot_lmtp_combine_and_contrast() - Combine LMTP Models from Multiple Batches and Compute Cross-Batch Contrasts
-
margot_lmtp_evalue() - Combine LMTP Summary and E-Value Calculation
-
margot_lmtp_positivity() - Summarize positivity via density ratios for LMTP fits
-
margot_model_evalue() - Combine Model Summary and E-Value Calculation for Various Causal Models
-
margot_multi_evalue() - Multi-bias E-value table (v1: unmeasured confounding)
-
margot_omnibus_hetero_test() - Omnibus Heterogeneity Test for GRF Models
-
margot_planned_subgroups_batch() - Batch process heterogeneity analyses across multiple outcome domains
-
margot_policy() - Batch Processing of Policy Trees and Related Visualisations
-
margot_qini() - Generate QINI Curves and Difference Gain Summaries
-
margot_rate() - Assemble RATE tables (AUTOC and QINI)
-
margot_rate_batch() - Batch-compute RATEs for each outcome in a margot_causal_forest result
-
margot_rate_cv() - Cross-Validation Test for Treatment Effect Heterogeneity
-
margot_recompute_qini_aipw() - Recompute QINI Curves Using AIPW Scores
-
margot_recompute_qini_ipw() - Recompute QINI Curves Using IPW Scores
-
margot_report_lmtp_positivity() - One-stop LMTP positivity/overlap reporting for an analysis
-
margot_rescue_qini() - Post-process models to recover Qini curves via propensity trimming
-
margot_resort_contrast_lmtp() - Resort/Reorder LMTP Contrasts by Recomputing from Models
-
margot_policy_workflow() - End-to-end Policy Workflow (depth selection → report → interpretation)
-
margot_subset_model() - Subset Model Results for Binary and Categorical Exposures
-
margot_subset_batch() - Batch Process Subset Models for Causal Forests
-
margot_summary_cate_difference_gain() - Compute Difference in Gains and Integrated Difference Between Reference and Comparison Curves
-
get_consensus_info() - Get consensus tree information
-
get_variable_importance() - Extract variable importance from bootstrap results
-
summary(<margot_stability_policy_tree>) - Summary method for stability policy tree results
-
print(<margot_stability_policy_tree>) - Print method for stability policy tree results
-
summary(<margot_bootstrap_policy_tree>) - Summary method for bootstrap policy tree results
-
print(<margot_bootstrap_policy_tree>) - Print method for bootstrap policy tree results
-
print(<margot_correlation_assessment>) - Print method for margot_correlation_assessment
-
margot_plot() - Create a Margot Plot with Proper Multiplicity Correction
-
margot_plot_dev() - Experimental plot: advanced bias/adjustment features (DEV)
-
margot_plot_decision_tree() - Plot a Decision Tree from Margot Causal-Forest Results (robust labelling)
-
margot_plot_lmtp_overlap_grid() - Plot LMTP density-ratio grid (waves x shifts)
-
margot_plot_lmtp_learners() - Plot Super Learner weights for LMTP nuisance fits
-
margot_plot_multi_arm() - Create a Multi-arm Margot Plot with User-specified Contrast
-
margot_plot_policy_combo() - Create a Combined Decision Tree and Policy Relationship Graph
-
margot_plot_policy_tree() - Plot a policy tree (depth-adaptive)
-
margot_plot_qini() - Plot Qini Curves from margot_multi_arm_causal_forest Results
-
margot_plot_qini_batch() - Batch Process and Plot QINI Curves for Multiple Models
-
margot_plot_qini_batch_cost_sensitivity() - Batch Plot QINI Curves Across Treatment Costs for Multiple Models
-
margot_plot_qini_cost_sensitivity() - Plot QINI Curves Across Treatment Cost Scenarios
-
margot_plot_qini_cost_summary() - Create Summary Plot of Optimal Treatment Fractions Across Costs
-
margot_plot_rate() - Plot Rank Average Treatment Effect
-
margot_plot_rate_batch() - Batch Process and Plot RATE Curves for Multiple Models
-
margot_plot_tau() - Create Faceted Tau Hat Distribution Plots
-
margot_plot_cv_results() - Plot Cross-Validation Heterogeneity Test Results
-
margot_plot_cv_summary() - Create summary plot for cross-validation heterogeneity results
-
margot_view_lmtp_structure() - Helper function to view available models and contrasts
-
back_transform_logmean() - Back-transform Log-transformed Mean
-
back_transform_log_z() - Back Transform Z-Score to Original Log-Transformed Scale
-
back_transform_zscore() - Back Transform Z-Score to Original Scale
-
here_read() - Read Data Frame or Object from RDS File in a Specified Directory
-
here_save() - Save Data Frame as RDS File in a Specified Directory
-
here_read_qs() - Read Data Frame or Object from qs File in a Specified Directory
-
here_save_qs() - Save Data Frame or Object to qs File in a Specified Directory with Enhanced Compression
-
lmtp_evalue_tab() - Calculate E-values for LMTP Output
-
margot_back_transform_log_z() - Create Z-score to Original Scale Mapping for Log-Transformed Data
-
margot_debug_qini() - Debug Qini Curve Data
-
margot_get_labels() - Get display labels for multiple variable names
-
margot_invert_measure() - Invert Measure Values for Reverse Scoring
-
margot_log_transform_vars() - Log-transform Variables in a Data Frame
-
margot_plot_create_options() - Create Plot Options for Margot Plot
-
margot_plot_exposure() - Create a separate exposure plot
-
margot_plot_qini_simple() - Plot QINI Curves (Simplified Version)
-
margot_qini_alternative() - Compute QINI Curves (Alternative Implementation)
-
margot_qini_cost_sensitivity() - Perform Cost Sensitivity Analysis for QINI Curves
-
margot_qini_diagnostic() - Diagnose QINI Gain Discrepancies
-
margot_qini_scale_note() - Generate Explanatory Note for QINI Scale
-
margot_qini_scale_subtitle() - Generate Brief Scale Description for Plot Subtitles
-
margot_process_binary_vars() - Process Binary Variables in a Data Frame
-
margot_prop_missing() - Proportion of missing data at baseline
-
margot_rescue_qini() - Post-process models to recover Qini curves via propensity trimming
-
margot_reversed_labels() - Update label map by marking reversed outcomes
-
margot_save_png() - Save Margot Plot as PNG
-
margot_size() - Calculate the size of an R object in megabytes
-
margot_trim_sample_weights() - Standardise and (optionally) trim sample weights at both ends
-
prepare_panel_data() - Prepare Panel Data for Timeline Visualization
-
pretty_number() - Format Numbers with Commas
-
remove_numeric_attributes() - Remove Attributes from Numeric Columns in a Data Frame
-
read_multiple_images() - Read Multiple Images from a Folder
-
regress_with_covariates() - Generalized Linear Regression with Covariates
-
select_and_rename_cols() - Select and Rename Columns Based on Criteria
-
df_margot_example - Margot Example Dataset
-
fetch_margot_data() - Fetch Margot Example Data
-
list_margot_data() - List Available Margot Datasets
-
clear_margot_cache() - Clear Margot Data Cache
-
margot_simulate() - Simulate longitudinal exposures, outcomes, and covariates
-
margot_simulate_test_data_flip() - Generate Test Data with Flipped Outcomes
-
simulate_ate_data_with_weights() - Simulate Data for Average Treatment Effect (ATE) with Sample Weights