Package index
-
run_simulations()
- Run Simulations for Estimating ATE
-
simulate_ate_data_with_weights()
- Simulate Data for Average Treatment Effect (ATE) with Sample Weights
-
margot_count_dyads()
- Count Dyads in Longitudinal Data
-
margot_count_ids()
- Count Individual Participants in Longitudinal Data
-
margot_plot_boxplot()
- Create panel data Boxplots using ggplot2
-
margot_plot_boxplot_covariate()
- Create Boxplots with Covariates using ggplot2
-
margot_plot_discontinuity()
- Create a Discontinuity Plot for Multiple Events
-
margot_plot_histogram()
- Create a Histogram with Mean and Standard Deviation Highlights for Each Wave and Variable
-
margot_plot_response_timeline()
- Plot Panel Study Response Timeline
-
margot_plot_slope()
- Create a Slope Plot for Multiple Variables
-
margot_plot_slope_covariate()
- Create a Slope Plot using ggeffects
-
margot_plot_slope_covariate_batch()
- Create a Combined Slope Plot using ggeffects and patchwork
-
margot_plot_slope_covariate_combo()
- Create a Combined Slope Plot using ggeffects and patchwork
-
margot_summary_panel()
- Generate Summary Panel for Margot Study
-
create_transition_matrix()
- Create transition matrix for state transitions
-
match_mi_general()
- General Matching Function for Multiple Imputation Data
-
margot_make_tables()
- Create multiple summary tables for different variable sets across waves
-
margot_plot_categorical()
- Create a Coloured Histogram with Quantile or Custom Breaks
-
margot_plot_individual_responses()
- Create Individual Longitudinal Response Plots
-
margot_plot_shift()
- Visualize Shifts in Data Distributions with Highlighted Ranges
-
margot_propensity_model_and_plots()
- Create Propensity Score Model and Associated Plots
-
margot_summary_tables()
- Generate summary tables and plots for longitudinal data
-
transition_table()
- Transition Table
-
create_ordered_variable()
- Create Ordered Variable Based on Quantile Breaks or Custom Breaks with Informative Labels
-
impute_and_combine()
- Perform multiple imputation on a list of data frames and combine the results
-
margot_adjust_weights()
- Adjust Weights for Censoring and Sample Design with Progress Reporting
-
margot_amelia_to_mice()
- convert an amelia object to a mice object
-
margot_censor()
- Transform year_measured Variable Based on Clustered Conditions Within Waves
-
margot_compute_gender_weights_by_wave()
- Compute Gender-Based Sample Weights by Wave
-
margot_filter()
- Filter Data Based on Exposure Variables
-
margot_impute_carry_forward()
- Impute Missing Values Using Carry Forward in Longitudinal Data
-
margot_log_transform_vars()
- Log-transform Variables in a Data Frame
-
margot_process_binary_vars()
- Process Binary Variables in a Data Frame
-
margot_process_longitudinal_data()
- Process Longitudinal Data for Three Waves
-
margot_process_longitudinal_data_wider()
- Process Longitudinal Data for Multiple Waves
-
margot_wide()
- Transform longitudinal data to wide format with labels
-
margot_wide_impute_baseline()
- Transform to wide data with labels and impute baseline missing values
-
margot_wide_machine()
- This function transforms longitudinal data from long format to wide format, ensuring that baseline measurements are correctly labeled and included. It handles multiple observations per subject across an indefinite number of waves, and allows for the specification of baseline variables, exposure variables, outcome variables, and time-varying confounders.
-
causal_contrast_engine()
- Compute Causal Contrasts
-
causal_contrast_marginal()
- Causal Contrast Marginal Effects Estimation
-
double_robust_marginal()
- Double Robust Marginal Estimation and Tabulation
-
margot_causal_forest()
- Run Multiple Generalized Random Forest (GRF) Causal Forest Models with Enhanced Features
-
margot_lmtp()
- Batch Process LMTP Models
-
margot_multi_arm_causal_forest()
- Run Multiple Generalized Random Forest (GRF) Multi-Arm Causal Forest Models with Enhanced Features Run Multiple Generalized Random Forest (GRF) Multi-Arm Causal Forest Models with Enhanced Features
-
margot_compare_groups()
- Compare Treatment Effects Between Groups
-
margot_omnibus_hetero_test()
- Omnibus Heterogeneity Test for GRF Models
-
margot_interpret_marginal()
- This function interprets the output of causal effect analysis, providing a compact report. It only reports coefficients and E-values with **Evidence** or **Strong evidence** for causality. The language is suitable for scientific reports, avoiding explanations of treatment effects and E-values. Each outcome's interpretation starts with a separate paragraph heading using `####`. Additionally, it includes a final paragraph indicating that all other effect estimates presented either weak or unreliable evidence for causality.
-
margot_interpret_policy_tree()
- Interpret Policy Tree Results
-
margot_interpret_policy_batch()
- Batch Process Policy Tree Interpretations
-
margot_interpret_qini()
- Interpret Qini Results for Both Binary and Multi-Arm Treatments
-
margot_lmtp_evalue()
- Combine LMTP Summary and E-Value Calculation
-
margot_lmtp_tab()
- Summarise LMTP Output into a Data Frame
-
margot_model_evalue()
- Combine Model Summary and E-Value Calculation for Various Causal Models
-
margot_model_tab()
- Summarise LMTP or Causal Forest Output into a Data Frame
-
margot_policy()
- Batch Processing of Policy Trees and Related Visualizations
-
margot_subset_model()
- Subset Model Results for Binary and Categorical Exposures
-
margot_summary_cate_difference_gain()
- Compute Difference in Gains and Integrated Difference Between Reference and Comparison Curves
-
margot_plot()
- Create a Margot Plot with Interpretation
-
margot_plot_batch_rate()
- Batch Process and Plot RATE Curves for Multiple Models
-
margot_plot_decision_tree()
- Plot a Decision Tree from Margot Causal Forest Results
-
margot_plot_multi_arm()
- Create a Multi-arm Margot Plot with User-specified Contrast
-
margot_plot_policy_combo()
- Create a Combined Decision Tree and Policy Relationship Graph
-
margot_plot_policy_tree()
- Plot Policy Tree Results
-
margot_plot_qini()
- Plot Qini Curves from margot_multi_arm_causal_forest Results
-
margot_plot_rate()
- Plot Rank Average Treatment Effect
-
back_transform_logmean()
- Back-transform Log-transformed Mean
-
back_transform_zscore()
- Back Transform Z-Score to Original Scale
-
construct_formula()
- Construct a Formula for Regression Models
-
here_read()
- Read Data Frame or Object from RDS File in a Specified Directory
-
here_save()
- Save Data Frame as RDS File in a Specified Directory
-
here_read_qs()
- Read Data Frame or Object from qs File in a Specified Directory
-
here_save_qs()
- Save Data Frame or Object to qs File in a Specified Directory with Enhanced Compression
-
lmtp_evalue_tab()
- Calculate E-values for LMTP Output
-
margot_log_transform_vars()
- Log-transform Variables in a Data Frame
-
margot_plot_create_options()
- Create Plot Options for Margot Plot
-
margot_plot_exposure()
- Create a separate exposure plot
-
margot_process_binary_vars()
- Process Binary Variables in a Data Frame
-
margot_save_png()
- Save Margot Plot as PNG
-
margot_size()
- Calculate the size of an R object in megabytes
-
prepare_panel_data()
- Prepare Panel Data for Timeline Visualization
-
pretty_number()
- Format Numbers with Commas
-
read_multiple_images()
- Read Multiple Images from a Folder
-
remove_numeric_attributes()
- Remove Attributes from Numeric Columns in a Data Frame
-
regress_with_covariates()
- Generalized Linear Regression with Covariates
-
select_and_rename_cols()
- Select and Rename Columns Based on Criteria
-
transform_table_rownames()
- Transform Table Row Names with CLI Feedback
-
df_nz
- df_nz: Example Data Frame
-
coloured_histogram()
- Create a Coloured Histogram Highlighting Specific Ranges (DEPRECATED)
-
coloured_histogram_sd()
- Visualize Distribution with Mean and Standard Deviation Highlights
-
coloured_histogram_shift()
- Visualise Shifts in Data Distributions with Highlighted Ranges (DEPRECATED)
-
coloured_histogram_quantiles()
- Visualise Distribution with Automatically Calculated Quantile Highlights (DEPRECATED)
-
margot_plot_hist()
- Create a Coloured Histogram with Quantile or Custom Breaks (DEPRECATED)