Compute Difference in Gains and Integrated Difference Between Reference and Comparison Curves
Source:R/margot_summary_cate_difference_gain.R
margot_summary_cate_difference_gain.Rd
This function computes the difference in average gains and the integrated difference between a reference curve (maq object) and a comparison curve at a specified spend level. It returns a list of formatted strings for easy use in Quarto markdown text.
Usage
margot_summary_cate_difference_gain(
mc_result,
outcome_var,
reference_curve,
comparison_curve,
spend,
digits = 3
)
Arguments
- mc_result
A list containing the results from margot_multi_arm_causal_forest().
- outcome_var
A character string specifying the name of the outcome variable.
- reference_curve
A character string specifying the name of the reference Qini curve (e.g., "baseline").
- comparison_curve
A character string specifying the name of the comparison Qini curve (e.g., "arm2").
- spend
A numeric value specifying the spend level (between 0 and 1).
- digits
An integer specifying the number of decimal places to round the output. Default is 3.
Value
A list containing formatted strings for use in Quarto markdown text:
- diff_gain
Formatted string for difference in gains
- int_diff
Formatted string for integrated difference
- summary
A summary sentence of the comparison
Examples
if (FALSE) { # \dontrun{
# Assuming mc_result is the result of margot_multi_arm_causal_forest()
result <- margot_summary_cate_difference_gain(mc_result,
outcome_var = "model_Y",
reference_curve = "baseline",
comparison_curve = "arm2",
spend = 0.3)
# Use in text
glue::glue("The difference in gains is {result$diff_gain}. {result$summary}")
} # }