Create a margot plot for visualising causal effects with proper simultaneous confidence intervals using multcomp for family-wise error rate control.
Usage
margot_plot(
.data,
type = c("RD", "RR"),
order = c("alphabetical", "magnitude_desc", "magnitude_asc", "evaluebound_desc",
"evaluebound_asc", "custom", "default"),
custom_order = NULL,
title_binary = NULL,
include_coefficients = TRUE,
standardize_label = c("NZ", "US", "none"),
e_val_bound_threshold = 1.2,
adjust = c("none", "bonferroni"),
alpha = 0.05,
...,
options = list(),
label_mapping = NULL,
save_output = FALSE,
use_timestamp = FALSE,
base_filename = "margot_plot_output",
prefix = NULL,
save_path = here::here("push_mods"),
original_df = NULL,
bold_rows = FALSE,
rename_cols = FALSE,
col_renames = list(`E-Value` = "E_Value", `E-Value bound` = "E_Val_bound"),
rename_ate = FALSE,
rename_evalue = FALSE
)
Arguments
- .data
data frame containing causal effect estimates with columns for effect sizes, confidence intervals, E-values and E-value bounds
- type
character. type of effect estimate: "RD" (risk difference) or "RR" (risk ratio)
- adjust
character. multiplicity correction method: "none", "bonferroni"
- alpha
numeric. significance level for corrections
- ...
other parameters as in original function