Interpret Policy Tree Results
Source:R/margot_interpret_policy_tree.R
margot_interpret_policy_tree.Rd
This function creates an interpretation of policy tree results from a causal forest or multi-arm causal forest model. It generates a formatted description of the policy tree, including the main splits and recommended actions.
Usage
margot_interpret_policy_tree(
model,
model_name,
train_proportion = 0.7,
custom_action_names = NULL,
label_mapping = NULL,
original_df = NULL,
remove_tx_prefix = TRUE,
remove_z_suffix = TRUE,
use_title_case = TRUE
)
Arguments
- model
A list containing the results from a multi-arm causal forest model.
- model_name
A string specifying which model's results to interpret.
- train_proportion
numeric value between 0 and 1 for the proportion of data used for training. default is 0.7.
- custom_action_names
optional vector of custom names for the actions. must match the number of actions in the policy tree.
- label_mapping
optional list that maps variable names to custom labels. used for descriptive labels in the interpretation.
- original_df
optional dataframe with untransformed variables, used to display split values on the data scale.
- remove_tx_prefix
logical indicating whether to remove prefixes like t0_ from variable names. default is true.
- remove_z_suffix
logical indicating whether to remove the _z suffix from variable names. default is true.
- use_title_case
logical indicating whether to convert variable names to title case. default is true.
Value
invisibly returns a string containing the interpretation. the function also prints the interpretation to the console.
Examples
if (FALSE) { # \dontrun{
# create a label mapping
label_mapping <- list(
"t2_env_not_climate_chg_concern_z" = "Deny Climate Change Concern",
"t2_env_not_climate_chg_cause_z" = "Deny Humans Cause Climate Change"
)
# interpret policy tree results with label mapping
interpretation <- margot_interpret_policy_tree_new(
model = models_multi,
model_name = "model_t2_env_not_climate_chg_concern_z",
label_mapping = label_mapping,
original_df = original_df
)
# print the interpretation
cat(interpretation)
} # }