Plot Cross-Validation Heterogeneity Test Results
Source:R/margot_plot_cv_results.R
margot_plot_cv_results.Rd
Creates a forest plot visualization of cross-validation heterogeneity test results from margot_rate_cv(). Shows t-statistics, p-values, and significance for each model.
Usage
margot_plot_cv_results(
cv_results,
title = NULL,
subtitle = NULL,
x_lab = "t-statistic",
y_lab = "Model",
remove_model_prefix = TRUE,
label_mapping = NULL,
show_p_values = TRUE,
significance_color = "#4CAF50",
non_significance_color = "#9E9E9E",
null_line_color = "#FF5252",
point_size = 3,
text_size = 3
)
Arguments
- cv_results
A margot_cv_results object from margot_rate_cv()
- title
Character string for the plot title. If NULL (default), a title is generated based on the CV method details.
- subtitle
Character string for the plot subtitle. Default shows the adjustment method.
- x_lab
Character string for the x-axis label. Default is "t-statistic".
- y_lab
Character string for the y-axis label. Default is "Model".
- remove_model_prefix
Logical; remove "model_" prefix from model names. Default TRUE.
- label_mapping
Optional named list for custom label mappings. Keys should be model names (with or without "model_" prefix), and values should be the desired display labels.
- show_p_values
Logical; show p-values on the plot. Default TRUE.
- significance_color
Color for significant results. Default "#4CAF50" (green).
- non_significance_color
Color for non-significant results. Default "#9E9E9E" (gray).
- null_line_color
Color for the null hypothesis line. Default "#FF5252" (red).
- point_size
Size of the points. Default 3.
- text_size
Size of p-value text. Default 3.
Examples
if (FALSE) { # \dontrun{
# Run cross-validation heterogeneity test
cv_results <- margot_rate_cv(
model_results = cf_results,
num_folds = 5,
target = "AUTOC",
alpha = 0.2, # recommended for Bonferroni
adjust = "bonferroni"
)
# Create forest plot
p <- margot_plot_cv_results(cv_results)
print(p)
# Create summary plot
p_summary <- margot_plot_cv_summary(cv_results)
print(p_summary)
# With custom labels
label_mapping <- list(
"model_happiness" = "Happiness",
"model_depression" = "Depression"
)
p <- margot_plot_cv_results(cv_results, label_mapping = label_mapping)
# Note: If you try to use margot_plot_rate() with CV results, you'll get an error:
# margot_plot_rate(cv_results$cv_results) # Error - use margot_plot_cv_results() instead
} # }