---
title: "Resources"
---
## Learning Pathways
### 🎯 Start Here: Methods in Causal Inference Series
A comprehensive four-part tutorial series published in *Evolutionary Human Sciences* that provides a systematic introduction to causal inference methods:
:::: {.columns}
::: {.column width="50%"}
**Part 1: [Causal Diagrams and Confounding](https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/methods-in-causal-inference-part-1-causal-diagrams-and-confounding/E734F72109F1BE99836E268DF3AA0359)**
🟢 *Beginner* • Essential concepts, DAGs, and confounding bias
**Part 2: [Interaction, Mediation, and Time-Varying Treatments](https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/methods-in-causal-inference-part-2-interaction-mediation-and-timevarying-treatments/D7FD95D3ED64FE0FBBEC37AC6CEAFBC1)**
🟡 *Intermediate* • Effect modification and complex causal structures
:::
::: {.column width="50%"}
**Part 3: [Measurement Error and External Validity](https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/methods-in-causal-inference-part-3-measurement-error-and-external-validity-threats/4D35FFDECF32B2EFF7557EC26075175F)**
🟡 *Intermediate* • Critical for cross-cultural research
**Part 4: [Confounding in Experiments](https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/methods-in-causal-inference-part-4-confounding-in-experiments/570D60A5FCCA007B55427384818C368E)**
🔴 *Advanced* • Experimental design considerations
:::
::::
::: {.callout-tip}
## Getting Started with R & Causal Tools
- [Introduction to Directed Acyclic Graphs](https://r-causal.github.io/ggdag/articles/intro-to-dags.html) - Interactive tutorial
- [Common Structures of Bias](https://r-causal.github.io/ggdag/articles/bias-structures.html) - Visual guide
- [WeightIt Documentation](https://ngreifer.github.io/WeightIt/) - Propensity score weighting
:::
---
## Software & Tools
### R Packages
::: {.panel-tabset}
#### Causal Inference
**margot** *(migrating to margotverse)*
A comprehensive framework for causal inference with panel data, supporting doubly robust estimation and sensitivity analyses.
- [Documentation](https://go-bayes.github.io/margot/)
- [Source Code](https://github.com/go-bayes/margot/)
- Installation: `devtools::install_github("go-bayes/margot")`
::: {.callout-warning}
## Package Migration Notice
The `margot` package is currently being restructured into the `margotverse` ecosystem. This migration will provide a more modular and maintainable framework for causal inference.
:::
**ggdag**
Create and analyze directed acyclic graphs (DAGs) for causal inference.
- [Documentation](https://r-causal.github.io/ggdag/)
- [CRAN](https://cran.r-project.org/package=ggdag)
- Installation: `install.packages("ggdag")`
**WeightIt**
Weighting for covariate balance in observational studies.
- [Documentation](https://ngreifer.github.io/WeightIt/)
- [CRAN](https://cran.r-project.org/package=WeightIt)
- Installation: `install.packages("WeightIt")`
#### Research Tools
**boilerplate**
Tools for generating standardised boilerplate text and documentation for reproducible research.
- [Documentation](https://go-bayes.github.io/boilerplate/)
- [CRAN](https://cran.r-project.org/package=boilerplate)
- Installation: `install.packages("boilerplate")`
:::
<!-- ### Tutorials -->
<!-- - Getting started with causal inference -->
<!-- - Introduction to doubly robust methods -->
<!-- - Analysing heterogeneous treatment effects -->
---
## Essential Readings
::: {.panel-tabset}
### Causal Diagrams & DAGs
**Core Readings**
- Barrett, M. (2023). [ggdag: Analyze and Create Elegant Directed Acyclic Graphs](https://github.com/malcolmbarrett/ggdag)
- Suzuki, E. et al. (2020). [Causal Diagrams: Pitfalls and Tips](https://www.dropbox.com/scl/fi/4midxwr9ltg9oce02e0ss/suzuki-causal-diagrams.pdf?rlkey=uktzf3nurtgpbj8m4h0xz82dn&dl=0) 🟡
- Neal, B. (2020). [Introduction to Causal Inference](https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf) - Chapter 3 🟢
**Advanced Topics**
- Hernán, M.A. & Robins, J.M. (2024). [Causal Inference: What If](https://www.dropbox.com/scl/fi/9hy6xw1g1o4yz94ip8cvd/hernanrobins_WhatIf_2jan24.pdf?rlkey=8eaw6lqhmes7ddepuriwk5xk9&dl=0) - Chapter 6 🔴
### Effect Modification & Interaction
**Foundational Papers**
- VanderWeele, T.J. (2007). [Four Types of Effect Modification](https://www.dropbox.com/scl/fi/drytp2ui2b8o9jplh4bm9/four_types_of_effect_modification__a.6.pdf?rlkey=mb9nl599v93m6kyyo69iv5nz1&dl=0) 🟡
- VanderWeele, T.J. (2009). [On the Distinction Between Interaction and Effect Modification](https://www.dropbox.com/scl/fi/srpynr0dvjcndveplcydn/OutcomeWide_StatisticalScience.pdf?rlkey=h4fv32oyjegdfl3jq9u1fifc3&dl=0) 🟡
**Applied Methods**
- Hernán, M.A. & Robins, J.M. (2024). [Causal Inference: What If](https://www.dropbox.com/scl/fi/9hy6xw1g1o4yz94ip8cvd/hernanrobins_WhatIf_2jan24.pdf?rlkey=8eaw6lqhmes7ddepuriwk5xk9&dl=0) - Chapters 4-5 🟡
### Measurement & Cross-Cultural Validity
**Measurement Theory**
- VanderWeele, T.J. (2022). [Constructed Measures and Causal Inference](https://www.dropbox.com/scl/fi/mmyguc0hrci8wtyyfkv6w/tyler-vanderweele-contruct-measures.pdf?rlkey=o18fiyajdqqpyjgssyh6mz6qm&dl=0) 🔴
- Fischer, R. & Karl, J.A. (2019). [A Primer to (Cross-Cultural) Multi-Group Invariance Testing](https://www.dropbox.com/scl/fi/1h8slzy3vzscvbtp6yrjh/FischeKarlprimer.pdf?rlkey=xl93d5y7280c1qjhn3k2g8qls&dl=0) 🟡
**Cross-Cultural Methods**
- He, J. & Van de Vijver, F.J.R. (2012). [Bias and Equivalence in Cross-Cultural Research](https://www.dropbox.com/scl/fi/zuv4odmxbz8dbtdjfap3e/He-BiasandEquivalence.pdf?rlkey=wezprklb4jm6rgvvx0g58nw1n&dl=0) 🟡
- Harkness, J.A. (2003). [Questionnaire Translation](https://www.dropbox.com/scl/fi/hmmje9vbunmcu3oiahaa5/Harkness_CC_translation.pdf?rlkey=6vqq3ap5n52qp7t1e570ubpgt&dl=0) 🟢
### Selection Bias & Experimental Design
**Selection Bias**
- Hernán, M.A. et al. (2004). [A Structural Approach to Selection Bias](https://www.dropbox.com/scl/fi/qni0y1lstntmdw410m2nh/Heran2004StructuralSelectionBias.pdf?rlkey=0ob86mmx7vscxqmn3ipg9m94f&dl=0) 🔴
- Hernán, M.A. (2017). [Selection Without Colliders](https://www.dropbox.com/scl/fi/zr3tk7ngsutjprqr18bbg/hernan-selection-without-colliders.pdf?rlkey=vfluyl3a7zksfphqepao04fix&dl=0) 🔴
**Measurement Error**
- Hernán, M.A. & Cole, S.R. (2009). [Causal Diagrams for Measurement Error](https://www.dropbox.com/scl/fi/ip8nil6uc5l0x9xw14mbr/hernan_cole_Measure_causal_diagrams.pdf?rlkey=wkj3ayen8xb6ncog46sps2g49&dl=0) 🟡
### Practical Workflows
**Implementation Guides**
- Bulbulia, J.A. (2024). [A Practical Guide to Causal Inference](https://osf.io/preprints/psyarxiv/uyg3d) 🟢
- Hoffman, K.M. et al. (2023). [Comparison Groups in Propensity Score Analysis](https://arxiv.org/pdf/2304.09460.pdf) 🟡
**Outcome-Wide Approaches**
- VanderWeele, T.J. et al. (2020). [Outcome-Wide Longitudinal Designs](https://www.dropbox.com/scl/fi/srpynr0dvjcndveplcydn/OutcomeWide_StatisticalScience.pdf?rlkey=h4fv32oyjegdfl3jq9u1fifc3&dl=0) 🟡
### Heterogeneous Treatment Effects
**Key Papers**
- Athey, S. & Wager, S. (2019). [Estimating Treatment Effects with Causal Forests: An Application](https://arxiv.org/pdf/1902.07409.pdf) 🟡
- Wager, S. & Athey, S. (2018). [Estimation and Inference of Heterogeneous Treatment Effects using Random Forests](https://www.tandfonline.com/doi/full/10.1080/01621459.2017.1319839) 🔴
- Künzel, S.R. et al. (2019). [Metalearners for Estimating Heterogeneous Treatment Effects using Machine Learning](https://www.pnas.org/doi/10.1073/pnas.1804597116) 🟡
**Practical Applications**
- Davis, J. & Heller, S.B. (2017). [Using Causal Forests to Predict Treatment Heterogeneity](https://arxiv.org/pdf/1707.02641.pdf) 🟢
- Athey, S. & Imbens, G.W. (2016). [Recursive Partitioning for Heterogeneous Causal Effects](https://www.pnas.org/doi/10.1073/pnas.1510489113) 🟡
:::
---
## Video Library
### Core Concepts
:::: {.columns}
::: {.column width="50%"}
#### Getting Started in R
*Johannes Karl*
{{< video https://www.youtube.com/embed/haYxa3vWA28 >}}
:::
::: {.column width="50%"}
#### Causal Inference
*Richard McElreath*
{{< video https://www.youtube.com/watch?v=KNPYUVmY3NM >}}
:::
::::
### Causal Inference Methods
:::: {.columns}
::: {.column width="50%"}
#### Synthetic Control Methods
*Alberto Abadie*
{{< video https://www.youtube.com/watch?v=nKzNp-qpE-I&list=PLoazKTcS0RzZ1SUgeOgc6SWt51gfT80N0&index=11 >}}
:::
::: {.column width="50%"}
#### Difference-in-Differences
*Paul Goldsmith-Pinkham*
{{< video https://www.youtube.com/watch?v=2nDgrNP7XSE&list=PLoazKTcS0RzZ1SUgeOgc6SWt51gfT80N0&index=10 >}}
:::
::::
:::: {.columns}
::: {.column width="50%"}
#### Instrumental Variables
*Brady Neal*
{{< video https://www.youtube.com/watch?v=B0SRWteGoOw&list=PLoazKTcS0RzZ1SUgeOgc6SWt51gfT80N0&index=9 >}}
:::
::: {.column width="50%"}
#### Problems with Mediation Analysis
*Tyler VanderWeele*
{{< video https://www.youtube.com/watch?v=IgC7R07Qk6A&t=953s >}}
:::
::::
### Advanced Topics
:::: {.columns}
::: {.column width="50%"}
#### How Do We Learn What Works?
*Miguel Hernán*
{{< video https://www.youtube.com/watch?v=NsVDfKiVGPc >}}
:::
::: {.column width="50%"}
#### Measurement Constructs
*Tyler VanderWeele*
{{< video https://www.youtube.com/watch?v=UA2WvYlT2RE&t=24s >}}
:::
::::
### Specialized Topics
#### Causal Inference Workflows
*Stijn Vansteelandt & Betsy Ogburn*
{{< video https://www.youtube.com/watch?v=DkyNCJLWqUg&t=2827s >}}
### Heterogeneous Treatment Effects
:::: {.columns}
::: {.column width="50%"}
#### Introduction to Causal Forests
*Susan Athey & Stefan Wager*
{{< video https://www.youtube.com/watch?v=YBbnCDRCcAI&t=1241s >}}
:::
::: {.column width="50%"}
#### Technical Deep Dive: Causal Forests
*Stefan Wager*
{{< video https://www.youtube.com/watch?v=lBW4fwjCF44 >}}
:::
::::
---
## Educational Materials
### Workshop Materials
- [SPARCC Causal Inference Workshop](https://go-bayes.github.io/sparcc-day-2/)
- [PSYC 434: Conducting Research Across Cultures](https://go-bayes.github.io/psych-434-2025/) - Full course materials
---
## Reference Texts
### Core Textbooks
:::: {.columns}
::: {.column width="50%"}
**Causal Inference: What If**
*Miguel A. Hernán & James M. Robins*
[Free Book & Resources](https://miguelhernan.org/whatifbook) • The definitive text on causal inference methods with code examples
**Introduction to Causal Inference**
*Brady Neal*
[Free Online Course](https://www.bradyneal.com/causal-inference-course) • Modern introduction with code examples
:::
::: {.column width="50%"}
**Methodology in Cross-Cultural Psychology**
*Fons J.R. van de Vijver & Kwok Leung*
[Cambridge University Press](https://doi.org/10.1017/9781107415188) • Essential for cross-cultural research
**The Effect: An Introduction to Research Design and Causality**
*Nick Huntington-Klein*
[Free Online](https://theeffectbook.net/) • Practical guide with visualizations
:::
::::
### Additional Resources
- **Statistical Rethinking** by Richard McElreath - Bayesian approach to causal inference
- **Counterfactuals and Causal Inference** by Morgan & Winship - Social science applications
- **Targeted Learning** by van der Laan & Rose - Machine learning for causal inference
---
## Quick Reference
::: {.callout-note}
## 🎯 Where to Start?
1. **New to causal inference?** → Start with our [four-part tutorial series](#learning-pathways)
2. **Need DAGs?** → Check out the [ggdag tutorials](#getting-started-with-r--causal-tools)
3. **Ready to analyze?** → Install [margot](#causal-inference) and follow our [practical guide](https://osf.io/preprints/psyarxiv/uyg3d)
4. **Cross-cultural research?** → See [Part 3](https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/methods-in-causal-inference-part-3-measurement-error-and-external-validity-threats/4D35FFDECF32B2EFF7557EC26075175F) of our series
:::
::: {.callout-tip}
## Contributing
Have a resource to suggest? Found a broken link? Please [contact us](about.qmd) or submit an issue on our [GitHub repository](https://github.com/go-bayes/epic-lab).
:::