Interest

Causal Directed Acyclic Graph

Treatment effect: after controlling for all common causes, what is the causal effect of $A \longrightarrow Y$?

Effect Modification (Moderation): does the effect of $A \longrightarrow Y$ vary across levels of Z^2

Interaction (joint-intervention):

after controlling for all common causes of $A{\longrightarrow} Y$ and $B{\longrightarrow} Y$, is the combined effect of A and B on Y different from their individual effects?

Mediation: assuming unbiased confounding control, what are the separable effects of $A \longrightarrow Y$ (a): indirectly through M and (b) directly not through M?

Time-varying exposures: What are the causal effects of clearly specified sequential treatments? $\bar{A} \longrightarrow Y$?

Kev:

A denotes the treatment;

 \boldsymbol{B} denotes a second treatment (as in interaction analysis).

 ${\cal Y}$ denotes the outcome;

L denotes a confounder;

 \underline{Z} denotes a modifier of for the effect of $A \longrightarrow Y$

X indicates conditioning on variable X.

asserts causality

—o indicates an interest in effect-modification (causality need not be asserted);

Note 1: when analysing effect-modification, our focus is on the $A \longrightarrow Y$ pathway, and whether this effect varies within levels of Z; we do not estimate Z's causal effect (if any) on Y. We use the agnostic arrow —o to denote this specific interest in Z in relation to $A \longrightarrow Y$.

Note 2: interaction analysis requires identifying two causal effects $(A \longrightarrow Y \text{ and } B \longrightarrow Y)$ and controlling for their common causes. Mediation analysis, not interaction analysis, is needed if A and B influence each other $(B \longrightarrow A \text{ or } A \longrightarrow B)$.