
Using boilerplate with Quarto for Scientific Writing
Source:vignettes/boilerplate-quarto-workflow.Rmd
boilerplate-quarto-workflow.Rmd
Introduction
The boilerplate
package is designed to streamline
scientific writing in Quarto documents. This vignette demonstrates a
complete workflow for using boilerplate
to manage reusable
text templates in your research papers.
Why Use boilerplate with Quarto?
Quarto is becoming the standard for reproducible scientific
documents. The boilerplate
package enhances Quarto
workflows by:
- Centralizing reusable text in version-controlled databases
- Enabling consistent language across documents
- Supporting collaborative workflows
- Reducing errors through template reuse
- Facilitating updates when methods change
- Supporting both RDS and JSON formats for different use cases (see
vignette("boilerplate-json-workflow")
)
Setting Up a Quarto Project
Recommended Project Structure
my-research-project/
├── .boilerplate-data/ # boilerplate databases
├── manuscript/
│ ├── paper.qmd # Main manuscript
│ ├── _methods.qmd # Methods section
│ └── references.bib # Bibliography (auto-copied)
└── .gitignore # Exclude backups
Initialise boilerplate
# Use a project-specific directory
# For this example, using a temporary directory
data_path <- file.path(tempdir(), "quarto_example")
# Initialise all databases
boilerplate_init(
data_path = data_path,
create_dirs = TRUE,
create_empty = FALSE, # Load default content
confirm = FALSE,
quiet = TRUE
)
Building Your Text Database
Methods Templates
Create reusable methods templates with placeholders:
# Import database first
db <- boilerplate_import(data_path = data_path, quiet = TRUE)
# Add participant recruitment template to the unified database
db <- boilerplate_add_entry(
db,
path = "methods.participants.recruitment",
value = "We recruited {{n_participants}} participants through {{recruitment_method}}.",
category = "methods"
)
# Save the updated database
boilerplate_save(db, data_path = data_path, confirm = FALSE, quiet = TRUE)
Measures Database
Store information about your measures:
# Add a measure to the unified database
db$measures$gad7 <- list(
name = "GAD-7",
description = "Generalized Anxiety Disorder 7-item scale",
type = "ordinal", # Required field
items = list(
"Feeling nervous, anxious, or on edge",
"Not being able to stop or control worrying"
),
reference = "@spitzer2006"
)
# Save the updated database
boilerplate_save(db, data_path = data_path, confirm = FALSE, quiet = TRUE)
Using Templates in Quarto
Here’s how to use boilerplate in your Quarto document:
# Import database (using the temp path from above)
db <- boilerplate_import(data_path = data_path, quiet = TRUE)
# Generate methods text
methods_text <- boilerplate_generate_text(
category = "methods",
sections = "participants.recruitment",
global_vars = list(
n_participants = 250,
recruitment_method = "online panels"
),
db = db,
quiet = TRUE
)
# Output: "We recruited 250 participants through online panels."
Example Quarto Document Structure
Your main Quarto document (paper.qmd
) might look
like:
Then in the document:
## Introduction
[Your introduction...]
## Methods
{{< include _methods.qmd >}}
## Results
[Your results...]
And in _methods.qmd
:
library(boilerplate)
# Load database and generate text
db <- boilerplate_import(data_path = data_path, quiet = TRUE)
# Generate participant section
participant_text <- boilerplate_generate_text(
category = "methods",
sections = "participants.recruitment",
global_vars = list(n_participants = 250),
db = db
)
cat(participant_text)
Best Practices
-
Version Control: Commit your
.boilerplate-data/*.rds
files to git - Documentation: Document template variables in descriptions
-
Organization: Use hierarchical paths (e.g.,
methods.participants.recruitment
) - Collaboration: Share databases through version control
- Maintenance: Use batch operations to update multiple entries
Bibliography Management
The boilerplate package can manage your bibliography file, ensuring consistent citations across projects:
# Add bibliography information to your database
db <- boilerplate_import(data_path = data_path, quiet = TRUE)
# Using the example bibliography included with the package
example_bib <- system.file("extdata", "example_references.bib", package = "boilerplate")
db <- boilerplate_add_bibliography(
db,
url = paste0("file://", example_bib),
local_path = "references.bib"
)
# Save the updated database
boilerplate_save(db, data_path = data_path, confirm = FALSE, quiet = TRUE)
Automatic Bibliography Copying
When generating text, automatically copy the bibliography:
# Generate text and copy bibliography
methods_text <- boilerplate_generate_text(
category = "methods",
sections = "statistical.default", # Use existing section
db = db,
copy_bibliography = TRUE,
bibliography_path = "manuscript/" # Copy to manuscript directory
)
Your Quarto document header would include:
Validating Citations
Ensure all citations in your boilerplate text exist in your bibliography:
# Validate references
validation <- boilerplate_validate_references(db)
if (!validation$valid) {
warning("Missing references: ", paste(validation$missing, collapse = ", "))
}
Advanced Features
Batch Updates
Update multiple entries at once:
# Update all methods entries
db <- boilerplate_import(data_path = data_path, quiet = TRUE)
boilerplate_batch_edit(
db = db$methods,
field = "text",
new_value = function(text) gsub("old text", "new text", text),
target_entries = "*",
preview = TRUE # Preview changes first
)
Quarto Parameters
Use Quarto parameters with boilerplate:
Then in your code:
methods_text <- boilerplate_generate_text(
category = "methods",
sections = "participants",
global_vars = list(
n_participants = params$n_participants,
study_name = params$study_name
),
db = db
)